高中数学思想方法精选8篇
高中数学思想方法1第一:函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4)有分有合,先分后合,是分类整合思想的本质属性
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的`转化、构造转化、命题的等价转化
第五:特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
高中数学思想方法21、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的'一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。
高中数学思想方法31、函数与方程思想
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
2、数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
3、分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4)有分有合,先分后合,是分类整合思想的本质属性
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
4、化归与转化思想
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题
( ……此处隐藏5258个字……法,有的甚至有十几种解法,但这些解法中具有普遍意义的通用解法也就一两种而已,更多的是针对这个题目的专用解法,这些解法作为兴趣爱好去欣赏是可以的,但在高考复习中却不能把它当做重点。
四、用数学思想指导学习
所谓数学思想,包含两层含义:一是中学数学应掌握的主要的四类数学思想:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想;二是应掌握的常用数学方法。
这些基本思想方法是蕴涵在具体的题目中的,考生需不断地通过这些例题和习题进行“提炼”和“概括”,仔细体会,认真思考,在不断地思考体会中把这些思想方法进行内化,转换为自己的能力,反过来用这些思想方法指导解题,在不断的反复中把数学知识和数学思想方法融为一体,使自己的能力达到一个新的高度。经过复习积累经验,悟出一些个性方法。
五、加大对主干知识的复习力度
高考突出的考查点是高中数学的主干知识,因此考生在复习中要加大对这些知识点的复习力度。高考试题五个大题是以三角函数、数列、概率统计、空间线面关系、圆锥曲线、函数这几个主干知识点为中心展开的,高考命题体现对重点知识的考查要保持较高的比例,这一命题思想是永远也不会改变的。
高中数学思想方法7(一)引导学生做到数形有机结合
数形结合是将抽象与具体相融合的过程,在这一过程中能够有效实现数与形的优势互补,将二者之间的本质联系凸显出来。如在学习《圆的面积》一节时,之前学生已对圆有了基本认识,因此,在教学如何计算圆的面积时,教师可先引导学生猜想圆的面积同什么要素有关。为了让学生有更为直观的感受,教师还可要求学生自己在练习本上分别画出半径是3cm、4cm和5cm的圆。然后,再询问学生,这三个圆的大小不一样,那它们的面积大小是什么关系呢?是等于还是半径越小的面积越大,或是半径越大圆的面积越大?学生在思考了一下后大都认为半径为5cm的那个圆最大,半径是3cm的圆的面积最小。在有了这样的认识后,学生就会在头脑中形成圆的面积同半径有关这样一个认识,之后教师就可据此引导学生如何求得圆的面积。综上所述,在引入圆的面积之前,我先让学生对圆同半径之间的关系有了一个清晰的了解,为了达到这个目的采取的是让学生自己动手将头脑中抽象的东西通过图形展示出来并结合具体的数字印证出来的方法。这种数形结合的思想方法能够使问题直观化,将学生学习的积极性和主动性调动起来,提高了课堂教学质量。
(二)学会转化,化难为易
转化的思想就是用联系、运动和发展的.观点去看问题,通过变换问题的形式,把未解决的或复杂的问题归结到已经能解决的或简单的问题中,从而获得对原问题的解决,因此转化的思想方法也叫划归的思想方法。在数学教学中转化的思想方法随处可见,特别是在解题时,我们可根据已知条件将问题转化,从另一个角度进行思考将难化易。如在讲完《圆的周长》这一节后,课后习题中有一道题是将长方形和正方形同圆结合起来,让学生在已知半径的情况下分别求出圆、长方形和正方形的周长。我将这道题中的一个小题做了改编,让学生在已知正方形周长的情况下去求圆的周长。圆位于正方形内,二者是相切的关系,这就要求学生能够根据正方形的周长求出正方形的边长,而正方形的边长就是圆的直径,再套用周长C=d的公式就能求得圆的周长。这套题目要求学生能根据已知条件对问题进行转化,从而创造出更多的已知条件。在这个过程中,学生一方面将新旧知识联系了起来,另一方面也扩散了思维,对于学生学习能力和解决问题能力的提升有积极的促进作用。
(三)及时做到归纳、总结
及时地归纳和总结既能够使知识更加系统化,又便于学生更好地发现各个知识点之间的联系与区别,对于巩固学生知识具有十分重要的作用。在数学中归纳的思想方法指通过对特殊示例、题材的观察和分析,摄取非本质的、次要的要素,从中发现事物的本质联系,并概括普遍性的结论。在讲完《圆》这一节后,我会及时要求学生将跟圆有关的知识总结出来,并在总结的同时思考自己在这一部分的学习中哪里还没有真正掌握,哪里还存在欠缺。此外,我还要求学生将自己之前做过的练习题也做一个总结,甚至是再多做一遍。总结知识点有利于学生做好知识的巩固与梳理工作,练习题的归纳则是让学生对于不同题目的不同解题思路和技巧有一个更明确的认识。而学生在总结的过程中能不断提升自己的概括能力,这也是数学思想方法渗入到学生思维中的一个良好的表现与结果。
高中数学思想方法8美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
高考试题主要从以下几个方面对数学思想方法进行考查:
①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;
②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;
③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;
④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。
为了帮助学生掌握解题的'金钥匙,掌握解题的思想方法,先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。
在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。
文档为doc格式