高中数学教学设计汇编(15篇)
作为一无名无私奉献的教育工作者,就不得不需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。我们应该怎么写教学设计呢?以下是小编帮大家整理的高中数学教学设计,仅供参考,欢迎大家阅读。
高中数学教学设计1一、教学目标
1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;
2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;
3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。
二、教学理念
为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的.必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
三、教法学法分析
1、教法分析
新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。
四、教材分析
本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。这在解决一些日常生活问题及科研中起着十分重要的作用。同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
五、教学重点与难点
重点 :(1)对数的定义;
故可以设
m?am,n?an
那么 mn?am?n
由对数的定义可以得到
logam?m,logan?n, logam?n?m?n
将m和n分别带入,那么可以得到如下结论: logam?n?logam?logan
可以以此为例,让学生在课堂上推导出如下运算性质的另外两个公式: 对数运算性质:
如果a?0,且a?1,m?0,n?0,那么:
(1)logam?n?logam?logan
(2)loga m
logamlogan n
(3)logamn?nlogam(n?r) 6. 引入实例,加深对公式的理解
例2.求下列各式的值
(1)log2(47?25);
(2)lg;
解:(1) log 4 7 ? (2) lg2 5)2(
log247log2257log245log227251 19
lg1025 25
高中数学教学设计2前言
为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。
在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。
不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!
1、集合与函数概念实习作业
一、教学内容分析
《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、学生学习情况分析
该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的`学生在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标
1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【课堂准备】
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习 ……此处隐藏32386个字……计的均值及标准差)
片段三品课教师借助高尔顿板演示.引导学生直观感受:①频率直方图共同特征.②样本容量增大,频率折线图逐步逼近连续光滑“钟型”曲线.帮助学生跨越由离散到连续认知障碍,从形上感知正态分布密度曲线,并激发学生探究欲望,何种随机变量服从正态分布?正态分布密度曲线有何特征?
教学片段四
师:小球很小时,如何更具体刻画小球位置呢?生:无回应.
师:去掉高尔顿板最下边球槽,沿高尔顿板底部建立水平坐标轴,刻度单位为球槽宽度,若用X表示小球第1次与高尔顿板底部接触时坐标,则X是何种随机变量?生:连续型随机变量.
师:如何计算小球落在区间[a,b]内概率?生:无应答.
师:如何用频率分布直方图计算概率?生:算面积.
师:好,在高尔顿实验中,如何算小球落在[a,b]内概率?生:算曲边梯形面积.
师:当试验次数增加或组距不断缩小时,如何用钟形曲线计算概率?
生:算定积分.师:很好.
片段四品课形象感知正态分布“钟形”曲线后,教师设问,引导学生抓“联系”搭建脚手架,在学生无回应时,演示去掉高尔顿板最下边球槽,沿高尔顿板底面建立水平坐标轴,刻度单位为球槽宽度.若用X表示小球第1次与高尔顿板底部接触坐标.小球很小,可视为质点,由小球落下的随机性,引导学生认知X是随机变量,可以坐标方式研究小球分布,引导学生搭建第一个脚手架:坐标系,以坐标轴上点稠密性,帮助学生跨越离散到连续认知障碍.紧接着启发学生类比离散型随机变量概率计算,算曲边梯形面积,进而算定积分来研究连续性随机变量在区间[a,b]上概率.引领学生搭建第二个脚手架:算定积分.为构建正态分布概念做好铺垫.
授课者在学生认知最近发展区域内,引领学生搭建脚手架,并根据概念逻辑结构,创设激发学生认知冲突的教学情境,提供大量与新概念相关事例及种属概念,巧妙借助于多媒体演示,数形结合由特殊到一般,具体到抽象,已知到未知,引导学生感受概念形成过程,观察、分析、辨别、揭开新概念抽象面纱,突破教学难点,这是本节课亮点之一.恰当教学情境创设及教学方法选择带来和谐顺畅师生互动氛围,促进了教学目标实现.
教学片段五
师:正态分布中参数μ和σ可以用样本均值和标准差去估计,正态分布完全由μ和σ确定.两个参数对正态曲线有何影响呢?
多媒体演示:引导学生观察:若σ固定,图像随μ值的'变化而沿x轴平移.
若μ固定,曲线的形状由σ决定:σ越小,曲线越“高瘦”表示总体分布越集中.σ越大,曲线越“矮胖”表示总体分布越分散.
师:当μ=0,σ=1时称x服从标准正态分布,记X~N(0,1)
片段五品课
借助多媒体演示,形象直观引导学生观察出μ与σ对正态分布密度曲线影响,了解μ与σ两个参数真实意义,促进学生对正态分布本质深入了解.此处可为数形结合突破教学难点之亮点.
课例品课从五个教学片段可见,教师设问目的性明确,设问方式恰当,能适时引领,但给学生的思维时间较少,对所产出现的疑惑问题直接给出解释,学生始终被老师牵着走.这也是这节课无思维创新的原因.从教学呈现品,结构清晰,主线明确,授课者语言精确简洁,板书设计突出概念关键点.多媒体使用恰当,能帮组学生跨越认知障碍,理解概念本质,把握正态分布曲线特征,对实现教学目标起到辅助作用.从课程性质品,学习目标符合教学大纲及学生特点,教学内容尊重教材,容量过大.学习目标检测以习题呈现,留给学生思考时间少,教师对反馈评价少,多直接给答案.但也只能如此,才能在一节课内完整呈现正态分布概念,此处值得同行商讨.教师适时应用正态分布曲线特征,进行德育渗透是本节课一亮点,反映授课者具有培养学生数学应用意识及综合素养的教育教学理念.从课程文化上品,授课者设问皆能激发学生认知冲突,指明探究方向.其中教学片段六中设问,激发认知冲突最激烈,课堂氛围热烈和谐,学生探究兴趣很浓,教师评价也及时,但当再度设问学生困惑时,教师没深入引领而直接解释,学生失去产生创新思维机会,传统灌输法教学使课堂合作探究氛围消失.这是教师受时间限制,对课堂预设外问题处理不当的结果.本节课问题环环相扣,反映授课人逻辑思维严谨.能多次激发学生认知冲突,反映授课人熟知学生认知特点,善于引领学生思考.数形结合,成功组织合作探究是本节课特色.
2.站在学生视角对课例品课
教学设计片段:正态分布是学生在学习离散型随机变量及其分布基础上,高中阶段唯一所学连续型随机变量分布.学生学习正态分布内容有三个认知障碍:①由离散型随机变量到连续型随机变量的认知飞跃.②生活中何种随机变量服从正态分布.③正态分布曲线有何性质?如何帮助学生成功跨越认知障碍,理解正态分布概念,已成为一场挑战.
片段品课:从教学设计可见,授课人对学生已有认知、概念生长点及认知特点做过充分研究,为后面选择教学情境及方法做好铺垫.
课堂反馈练习:①若随机变量X~Nμ,σ2则px≤μ=_______
②设随机变量X~N2,32若p(ξ>c+2)=p(ξ
学生视角品课:学生大多能在三十分钟内注意力集中,并参与课堂活动,积极思考,合作探究.但记笔记同学不多,这恰是多媒体演示造成的弊端.在概念探究活动中学生没提出问题,其原因有二:一是教师设问面较全,二是学生无足够时间思考并提出问题.教师对预设外问题处理有不当之处.课容量大,学生无自主学习时间.借助多媒体演示,学生对正态分布曲线特征把握比较顺畅,困惑仅在于对称性理解.这说明数形结合有助于学生把握概念本质,但概念本质理解离不开数学分析推理论证,而这恰是学生能力的弱项,有待训练提高.学生从本节课中学到了数形结合探究数学概念本质的方法.但由于留给学生课堂练习时间不足五分钟,故对练习中错误,教师无时间破释,仅给出答案.从学生错误可分析出,学生对正态分布曲线特征缺乏变式运用能力,此能力的锻炼提高.离不开构建概念变式习题串.如何培养学生构建概念知识网及变式习题串的能力,值得同行进一步探究.
3.站在听课者视角对课例品课
本节课教学程序合理,问题主线明确,层次清晰,巧用多媒体演示实验,数形结合,帮组学生跨越认知障碍,理解正态分布概念,把握正态分布曲线性质.板书设计突出关键词.教师成功引领学生合作探究,课堂氛围和谐热烈,但学生完全被教师思维所引领,缺乏足够独立思维时空,学生没提出预设外问题,仅是困惑后被灌输,无创新思维.整节课容量大,时间紧,练习少,学习方式及学法指导方式有待改进.课中教师提倡“以生为本”的教学理念,但苦于时间限制,无法尽善尽美,前半段教学体现新理念,后半段回归传统教学.其原因令同行深思:一节课是确保数学概念完整呈现重要,还是留给学生足够探究时空重要.这恰是同行值得探讨之问题.
4.我的积累及理念更新
品课活动有利于教师教学艺术及综合素养迅速提升,学校应将品课活动与教学检查同时进行,列入年度教学计划,每学年开展一次,并将品课材料汇编成册,留于教学研究及校本资源研发.
文档为doc格式