《掷一掷》教学设计
在教学工作者开展教学活动前,时常需要准备好教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的《掷一掷》教学设计,仅供参考,大家一起来看看吧。
《掷一掷》教学设计1一、教学内容
人教版小学数学五年级上册第50-51页。
二、教学目标
1、通过本次活动,使学生亲身经历观察、猜想、 试验、 验证的学习过程,综合运用所学知识探讨事件发生的可能性大小。
2、.结合实际情境,培养学生提出问题、分析和解决问题的能力。
3、通过应用和反思积累数学活动经验,感受成功的体验,提高学生学习数学的兴趣。
4、初步渗透比较、归纳、概率统计及有序思考等多种数学思想,感受偶然性背后的必然性。
三、教学重点
探索两个骰子点数之和在5,6,7,8,9居多的道理。
四、教学难点
综合运用所学知识解决问题。
五、教具学具准备
课件、实物投影仪、 骰子、水彩笔、活动记录单。
六、教学过程
(一)、导入
教师出示一颗骰子
师:今天赵老师给大家介绍一位新朋友,认识吗?
师:你们可别小看骰子,其实它里面还藏着一些数学奥秘呢?这节课,我们就来掷骰子玩儿。师板书课题:掷一掷
(二)、实践,探究
1.猜想:
师:现在老师把一个骰子掷下去, 正面朝上的数字可能会是几(1--6)这6种情况,出现的可能性一样吗?
小结:一颗骰子掷下去,可能会出现1、2、3、4、5、6六种情况,而且每种情况出现的可能性是一样的。
师:我们猜想一下,一起掷两颗骰子, 把它们朝上的点数相加,和可能有哪些?
生:和可能有2、3、4、5、6、7、8、9、10、11、12。(师板书)
师:和可能是1吗? 为什么?
生:不可能,因为最小的两个数是1,所以最小的和是2。
师:和可能是比12大的数吗?为什么?
生:不可能,因为最大的两个数是6,所以最大的和是12。
2.游戏
师:现在我们来进行掷骰子比赛,我们把这11个和分成两组,和是5、6、7、8、9的这组定为A组(写A组),和是2、3、4、10、11、12的这组定为B组(写B组)。掷出来的和在哪一组,那一组就赢,连续掷20次,谁赢的次数多谁就获胜。
师:你认为哪组赢的可能性更大呢?
生:我觉得B组赢的可能性大,(为什么?)因为B组有6个和,A组只有5个和。
师:到底哪组赢的可能性更大呢?我们一起来试一试,掷一掷。看一下游戏规则。
游戏规则:同时掷两颗骰子,朝上两个数的和是5、6、7、8、9 ,A组赢,和是2、3、4、10、11、12 ,B组赢,连续掷20次,谁赢的次数多谁就获胜。
准备好了吗?开始!(生边掷边报数记录)
师:结果出来了,哪组获胜了?(A组)
师:明明B组有6个和,应该赢的可能性大,为什么A组赢的次数多?再掷下去A组还会赢吗?
3.动手实验,探究奥秘
(1)师:相信许多同学都有这样的疑问,我们再来做个小实验,验证一下哪些和出现的`可能性大。实验要求: 每4名同学为一组,1号同学掷骰子,2号同学画正字记录A组赢还是B组赢,3号同学计算掷出的和是几,就在这张统计图上几的上面涂一格, 4号同学写出掷骰子过程中相加的和为以下数字的情况。请小组长分配一下,看看哪个组完成得又快又好,开始!(生动手实验)老师下去巡视。
(2)、展示学生的结果。
师将学生的结果在投影仪上展示,提问:从图上可以看出和是哪几个数的次数相对要多一些
小结规律:通过刚才的反复实验,我们已经发现同时掷两颗骰子,朝上两个数的和是5,6,7,8,9的可能性更大。
为什么A组选的少,反而赢。B组选的多,却输了?这是为什么呢?(给学生时间说)
原来奥秘就在这: 同时掷两颗骰子,哪组和出现的可能性大,并不是看每组和有多少个,而是看得到这些和的组合数的多少,组合数越多,掷出来的可能性就越大。
(三) 、分析原因,找出隐藏的秘密、理论验证可能性的大小。
1、 教师引出数的组合。
师:现在我们说一说,掷出两个点数的和是2时,每颗骰子分别是几和几? 有几种可能? 师:和是3时, 每颗骰子分别是几和几?有几种可能? 和是4时每颗骰子分别是几和几?和是5、6……12时,每颗骰子分别是几和几?又各有几种可能?大家好好想一想,拿出练习页,填一填。
3、 展台展示学生写的情况。(一种对的,一种错的。)
形成完整板书:
6+1
5+1 5+2 6+2
4+1 4+2 4+3 5+3 6+3
3+1 3+2 3+3 3+4 4+4 5+4 6+4
2+1 2+2 2+3 2+4 2+5 3+5 4+5 5+5 6+5
1+1 1+2 1+3 1+4 1+5 1+6 2+6 3+6 4+6 5+6 6+6
2 3 4 5 6 7 8 9 10 11 12
4、(1)我们观察一下这些和数分别出现的次数是多少?
生:和是2和12的出现1次,和是3和11的出现2次,和是4和10的出现3次, 和是5和9的出现4次, 和是6和8的出现5次,和是7的出现6次。
同时掷两颗骰子,到底一共有多少种组合情况呢 36种
和是5、6、7、8、9的组合有多少种 24种。那么和是2、3、4、10、11、12的组合有多少种 12种。也就是A组获胜的可能性最大,是B组的2倍…‥,
也就是说虽然A组只有5个数,赢的结果不是全靠运气,而是有一定的根据的。
5、师:通过这个实践活动,你们明白了什么?
同时掷两颗骰子,哪组和出现的可能性大,并不是看每组和有多少个,而是看得到这些和的组合数的多少,组合数越多,掷出来的可能性就越大。
师:今天同学们能通过自己的猜想,并通过动手实验,数据分析,发现了一些看似偶然现象后面隐藏的一些数学规律。更重要的是,同学们还能运用我们学过的可能性的知识来解释规律背后的原因,这是很了不起的,希望大家在以后的学习中继续保持这样的好习惯。
(四)、实践运用解决问题
师:前不久某商场 ……此处隐藏4558个字……算哪组赢。一组是“5、6、7、8、9”,另一组是“2、3、4、10、11、12”,如果让你们选一组,你们会选哪组?为什么?
二、同桌合作,实验验证
1、出示游戏规则:
(1) 两人为一小组合作掷骰子。
(2) 其中一人同时掷两颗骰子,算出它们的点数之和。另一个人负责把点数之和用彩笔涂到表格一中,和是几,就在几的上面涂一格,从下往上涂。
(3) 当涂满其中一列后,活动就结束。
2、同桌合作,进行游戏
3、汇报
4、总结:你发现了什么?
三、数学分析,理论验证
1、为什么掷出和是5、6、7、8、9的可能性较大?列举7、8可能性。
2、出示表格:
3、小组合作完成表格 4、汇报 5、小结
四、结合实际,应用规律: 1、验证导入中的比赛谁会赢? 2、大富翁游戏 3、摸奖游戏 五、课后总结
教学内容:人教版课标教材三年级数学上册118~119页。
教学目标:
1、通过本活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会数学在生活中的应用。
2、初步渗透比较、归纳,概率统计及有序思考等多种数学思想,透过现象看本质感受偶然性后面的.必然性。
3、结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
4、通过合作,培养学生的合作意识。
教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。
教学难点:探讨事情可能性
教具准备:骰子、统计图、统计表等
学具准备:彩笔
《掷一掷》教学设计5教学目标:
1、理解事件发生的可能性与不可能性及事件发生的可能性大小,并能对一些简单事件发生的可能性大小进行比较。
2、在游戏、试验、统计、分析、归纳总结中,培养实践能力和在实践中发现问题、解决问题、创造性运用知识的能力。
3、结合学习内容,进行思想教育,体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:
在活动中发现、体验0、1、2、8、9、10和这6个和出现的可能性较小;3、4、5、6、7这5个和出现的可能性较大。
教学难点:
理解可能性大小与实践发生不确定性的关系。
教学准备:
课件、色子 、统计表、
教学过程:
一、课前活动
课前观看百事可乐广告视频。
1、教练准备用什么决定哪个队先开球?
2、为什么用硬币开球? 生答:用硬币比较公平(掷出硬币正反两面的可能性是一样的)
3、除了硬币,还有什么公平的方法进行选择?(抛硬币、猜拳、掷色子)
4、我们知道,类似的游戏方式有很多,那么今天我们就从小色子走进掷一掷的课堂。教师板书课题。掷一掷
二、设置问题,猜想的开始
1、我们玩一个掷色子的游戏,出示课件游戏规则:如果掷出4,则女生赢。如果不是4,则男生赢,大家觉得公平吗?为什么?(色子有6面,4只是其中一种情况,还有1、2、3、5、6占5种情况都是男生赢。)那怎么给规则才公平?
2、现在增加1个色子,我们来玩两个色子得游戏,如果两个色子,点数和可能是几?课件出示游戏规则,如果是2、3、4、10、11、12,则蓝队赢。如果点数和是5、6、7、8、9则红队赢。现在你认为哪个队赢得可能性大?
让同学举手表示自己愿意参加哪个队,并询问原因。
3、现在让我们来实际做一做这个游戏,首先让两个同学上来示范一下。
(两人各掷3次,让学生大声报出点数和和哪队赢)老师随机往1号记录单演示涂格子。
4、同学们,我们掷了六次,能判断哪队赢的可能性大吗?为什么?
(试验次数少,有偶然性。)
5、那么我们全班都来玩。课件出示活动要求及分工。四人轮流掷色子,每人掷5次,副组长负责报点数和,组长在1号记录单上记录。记完的同学把记录单贴到黑板上。
(1)操作实践,学生小组合作。
(2)汇报小组合作交流的结果,汇总全班统计结果到课件的柱形图中。
学生汇报结果,红队赢的次数多。
(3)观察柱形图你能发现什么?总体趋势是中间高两边低。
6、为了使我们的结论更有说服力,继续掷色子。请来我们的神奇小助手,计算机。你想掷多少次?根据学生回答操作课件。
三、发现问题,猜想的深入。
1、实验结果红队获胜的可能性大。与我们猜想的结果不一样,为什么点数和少的红队反而赢了?点数和多的蓝队反而输了呢?结合刚才掷色子的.过程思考,为什么掷出中间数字的次数比较多?(生以某一个点数和为例说明)掷出几的可能性?掷出几的可能性最小?为什么?
2、提示同学先思考,为什么掷出的点数和2和12最少。(因为2和12都只有一种情况才能掷出)
3、那掷出其它数都有哪种情况呢?请小组为单位讨论并写一写?完成2号记录单,读一读温馨提示。用自己喜欢的方式写理由。例如:算式、数字等等。列举点数和可能出现的情况。
提醒:点数和为6,不可能有7、8、9等数。
小组汇报展示。
四、解决问题,猜想的验证
1、出示课件,请同学回答掷两个色子,一共可以出现多少种情况。(36种)其中,红队赢的情况有多少种(24种),蓝队赢的可能有多少种(12种)
2、师:现在,大家知道为什么红队赢的可能性大了吗?(红队赢的情况多,可能性大)
五、一锤定音
1、刚才观察柱形图,掷出几的可能性》?现在我来掷两个色子,请大家猜一猜我掷出的点数和是多少?只有一次机会。掷出7的可能性大,就一定掷出7吗?
提问学生,这说明了什么?(说明掷色子有偶然性)
课件出示概率论是一门研究事情发生的可能性的学问,虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
六、全课总结
说一说你有什么收获?
七、拓展延伸
某商店举行一次抽奖活动
游戏规则:两个骰子同时掷出,每掷一次五角钱。得到的数字的和如果是下列几种情况那就可以得到相应的奖品。
1 特等奖:奖品为漫画书一套,价值五十元
2或12 一等奖:奖品为一本笔记本,价值五元
3或11 二等奖:奖品为一支圆珠笔,价值一元
4或10 三等奖:奖品为一支铅笔,价值两角
5或9 鼓励奖:奖品为糖一颗,价值一角
对于这样的抽奖活动你想说什么?商家为什么这样设置奖项呢?你对这样的活动有什么看法?
文档为doc格式